Use of honey has a very long history. Honey has been used since ancient times due to its nutritional and therapeutic values. There have been varied ways of consuming honey including its use as a sweetener and flavoring agent. Honey is produced all over the world. The most important nutriment of honey is carbohydrates present in the form of monosaccharides, fructose and glucose. Honey plays an important role as an antioxidant, anti-inflammatory, anti-bacterial agent and augments the adherence of skin grafts and wound healing process. The role of honey has been acknowledged in the scientific literature and there is convincing evidence in support of its antioxidant and antibacterial nature, cough prevention, fertility and wound healing properties. However, its use has been controversially discussed and has not been well accepted in modern medicine. The aim of this review was to explore and highlight the role of honey in modern medicine.
3. Biological bioactive compounds
Honey has various essential biological bioactive compounds including vitamins “A (Retinol), Vitamin E (Tocopherol), Vitamin K (Anti-Haemorrhagic Vitamin), Vitamin B1 (Thiamine), Vitamin B2 (Riboflavin), Vitamin B6, Niacin, Vitamin C (Ascorbic acid), Panthothenic acid and phenolics, flavonoids and fatty acids” (Bogdanov et al., 2008, Muhammad et al., 2015), “cinnamic acid, hydroxybenzoic acid, octadecanoic acid, ethyl ester and flavonoids”. Moreover, it contain apigenin, pinocembrin, acacetin, abscisic acid and ferullic acid” (Marghitas et al., 2010, Muhammad et al., 2014). Furthermore, some amino acids of physiological significance are arginine, cysteine, glutamic acid, aspartic acid and proline (Qamer et al., 2007). Honey contains various flavonoid, phenolic, amino acid, protein, ascorbic acid and carotenoid contents and antimicrobial and antioxidant properties according to their weather and geographical conditions (Alvarez-Suarez et al., 2010a, Alvarez-Suarez et al., 2010b). The presence of these active compounds provides better understanding of the possible biological role of honey.
4. Antioxidant properties
The word “oxidative stress” defines the inadequate balance between free radicals and antioxidant protective activity (Bogdanov et al., 2008). Antioxidant is an element that can inhibit the oxidation of other molecules. Oxidation is a biochemical reaction that generates free radicals to chain reactions that may harm the cells, tissues and ultimately the physiological functions. Antioxidants such as vitamin C terminate the chain reactions to protect the body from free radicals. To balance the oxidative state, the human body maintains complex systems of overlapping antioxidants. Foods containing antioxidants have been shown to improve health. The literature suggests that honey contains potent anti-oxidative agents. The role of honey also depends on its concentration and its geographically origin. As an antioxidant, honey has numerous preemptive properties against many clinical conditions such as inflammatory disorders, coronary artery diseases, neurological worsening, aging and cancer. Increase in phenolic compounds in honey provides antioxidant property (Kishore et al., 2011). The substances such as polyphenols and phenolic acids found in honey vary according to the geographical and climatic condition; for example, flavanol kaempferol can be found in rosemary honey and quercetin in sunflower honey (Akan and Garip, 2011).
Alvarez-Suarez et al. (2012) determined the role of phenolics from monofloral honeys on human Red Blood Cells (RBCs) membranes against oxidative damage. The results show that honey constrains RBCs oxidative damage most probably due to its assimilation into cell membrane and capability to enter and reach at the cytosol. Honey contains appropriate antioxidants which are responsible for biological activity, defense and increase RBCs functions.
5. Antimicrobial activity
In modern medicine the therapeutic use of honey requires that it must exhibit consistent and standardized antimicrobial activity. Pharmaceutical and biological scientists need to identify the floral species which give anti-microbial characteristics. Honeys contain low pH and high osmolarity combined through the enzymatic assembly of hydrogen peroxide exerts an anti-microbial result (Bang et al., 2003).
The practice of honey in wound dressing is gaining popularity in modern medicine as an outcome of its anti-microbial function (Ismail et al., 2015). Moreover, some specific kinds of honey show broad-spectrum antimicrobial roles against antibiotic resistant bacterial pathogens (Blair et al., 2009, Cooper et al., 2002a, Cooper et al., 2002b, French et al., 2005). The floral sources are responsible for differences in the type and level of antimicrobial activity (Brady et al., 2004). It is mainly based on the environmental conditions and geographical location of the floral sources (Price and Morgan, 2006).
Julie et al. (2011) found that honey has clinical potential and shows an extensive range of antibacterial activity with an accepted possible therapeutic use. The antibacterial action was mainly due to hydrogen peroxide formed by the bee-derived enzyme glucose oxidase. Antibacterial activity of honey is mostly reliant on its peroxide activity and non-peroxide mechanisms. Mohd et al. (2013) reported that honey has antibacterial impact resulting from overall and non-peroxide activities. There is evidence that honey has required broad spectrum activity against Gram-positive and negative bacteria (Katrina and Calvin, 2014).
6. Honey in cough
Cough is a major concern for all people and is one of the most frequent complaints presented to almost all general physicians. Cough is common among children allied with multi-factorial etio-pathological causes. The occurrence of etiology depends on the age, geographical, environmental, weather and epidemiology conditions. The etio-pathology of cough in the pediatric population varies from young adults (Chang and Widdicombe, 2007, Chang, 2010). The adverse effects are more harmful among children than in adults. The children’s immune system is immature, therefore, they have amplified susceptibility to numerous infections accompanied with prolonged or chronic coughing (Ahmad, 2016). Cough in pediatrics has recently attracted more research interest and understanding its management is vital for their future respiratory health. Many medicines used for children’s cough management carry possible jeopardies of drowsiness (Paul et al., 2004).
Paul et al. (2007) reported clinical symptoms improvements between the various treatment groups and honey. Honey reliably scoring was meaningfully superior in the cough frequency treatment. In the present study, we reviewed the research literature and found that honey has an excellent safety profile and beneficial effects on the prevention of cough prevention. Cohen et al. (2012) conducted a study on three hundred children age ranges 1–5 years with upper respiratory tract infection, nocturnal cough and illness duration was about one week. The authors compared the effect of a single nighttime dose of three types of honey (eucalyptus honey, citrus honey and labiatae honey to placebo (silan date extract) on cough. In all three honey products groups, there was a significant greater improvement compared to the placebo group. Parents ranked the honey products better than the silan date extract and reported that honey is better for the symptomatic relief of night time cough and sleep difficulty allied with childhood upper respiratory infection.
7. Honey in wound healing
The medicinal significance of honey has been reported in the historical scientific literature. The healing property of honey is mainly due to its antibacterial activity, maintaining a moist wound condition and its high viscosity that helps to provide a protective barrier to prevent the infection (Manisha and Shyamapada, 2011, Hananeh et al., 2015). Honey has been identified for its outcome on the healing process (Nasir et al., 2010) with multiple positive effects on wound (Jull et al., 2013) and is considered to enhance circulation and healing growth. In research literature, honey has received high attention in the domain of wound healing (Cooper and Jenkin, 2009, Gethin and Cowman, 2009) especially the burn wounds (Jull et al., 2013). Honey is effective on various kinds of wounds where other wound healing methods are unsuccessful (Ligouri and Peters, 2010). Honey minimizes the risk of infection in wounds (Moore and Young, 2011, Wilkinson et al., 2011).
In addition, honey enhances the adherence of skin grafts, has antibacterial and anti-inflammatory effects with higher healing degree. Honey significantly decreases the infection rate on the 5th day of the injury, and minimizes pain and hospital stay. Moreover, honey has durable adhesive characteristics for skin graft fixation with minimum graft contraction Maghsoudi and Moradi, 2015) and honey dressing enhances the healing process of the surgical wounds (Goharshenasan et al., 2016)